Selasa, 25 April 2017

Model Regresi Dengan Dua Variabel


http://uniba.ac.id/home/

supawi-pawenang.blogspot.com


BAB III
MODEL REGRESI DENGAN DUA VARIABEL

Bentuk model
Model regresi dengan dua variabel10 umumnya dituliskan dengan simbol berbeda berdasarkan sumber data yang digunakan, meskipun tetap dituliskan dalam persamaan fungsi regresi. Fungsi regresi yang menggunakan data populasi (FRP) umumnya menuliskan simbol konstanta dan koefisien regresi dalam huruf besar, sebagai berikut:
Y = A + BX +  ……….. (pers.3.1)
Fungsi regresi yang menggunakan data sampel (FRS) umumnya menuliskan simbol konstanta dan koefien regresi dengan huruf kecil, seperti contoh sebagai berikut:
Y = a + bX + e ……….. (pers.3.2)
Dimana:
A atau a; merupakan konstanta atau intercept
B atau b; merupakan koefisien regresi, yang juga menggambarkan tingkat elastisitas variabel independen
Y; merupakan variabel dependen
X; merupakan variabel independen
Notasi a dan b merupakan perkiraan dari A dan B. Huruf a, b, disebut sebagai estimator atau statistik, sedangkan nilainya disebut sebagai estimate atau nilai perkiraan.11
Meskipun penulisan simbol konstanta dan koefisien regresinya agak berbeda, namun penghitungannya menggunakan metode yang sama, yaitu dapat dilakukan dengan metode kuadrat terkecil biasa (ordinary least square)12, atau dengan metode Maximum Likelihood.
Metode Kuadrat Terkecil Biasa (Ordinary Least Square) (OLS)
Penghitungan konstanta (a) dan koefisien regresi (b) dalam suatu fungsi regresi linier sederhana dengan metode OLS dapat dilakukan dengan rumus-rumus sebagai berikut:
Rumus Pertama (I)




Rumus kedua (II)



Menguji Signifikansi Parameter Penduga
Seperti dijelaskan di muka, dalam persamaan fungsi regresi OLS variabelnya terbagi menjadi dua, yaitu: variabel yang disimbolkan dengan Y (yang terletak di sebelah kiri tanda persamaan) disebut dengan variabel terikat (dependent variable).
Uji T
Untuk menguji hipotesis bahwa b secara statistik signifikan, perlu terlebih dulu menghitung standar error atau standar deviasi dari b. Berbagai software komputer telah banyak yang melakukan penghitungan secara otomatis, tergantung permintaan dari user. Namun perlu bagi kita untuk mengetahui formula dari standar error dari b, yang ternyata telah dirumuskan sebagai berikut:




Interpretasi Hasil regresi
Setelah tahapan analisis regresi dilakukan sesuai dengan teori-teori yang relevan, langkah terpenting berikutnya adalah menginterpretasi hasil regresi. Interpretasi yang dimaksudkan disini adalah mengetahui informasi-informasi yang terkandung dalam hasil regresi melalui pengartian dari angka-angka parameternya. Dengan mengambil hitungan dari contoh kasus di atas, maka hasil analisis regresi atas pengaruh variabel suku bunga (Budep) (X) terhadap tingkat inflasi di Indonesia selama 22 bulan mulai dari Januari 2001 hingga Oktober 2002 (Inflasi) (Y) dapat ditulis dalam persamaan sebagai
berikut:
Inflasi    = -9,5256 + 1,4498 Budep + e
thit          = (7,4348)
Koefisien Determinasi (R2)

Pembahasan hasil regresi di atas menunjukkan  seberapa besar nilai a, b, dan t. Nilai a menjelaskan tentang seberapa besar faktor-faktor yang bersifat tetap mempengaruhi inflasi, sedangkan nilai b mencerminkan tingkat elastisitas variabel X. Nilai t sendiri mempertegas signifikan tidaknya variabel X dalam mempengaruhi Y. Dari beberapa nilai yang didapatkan tersebut, belum diperoleh keterangan tentang berapa besar pengaruh X (budep) terhadap Y (inflasi).





Supawi Pawenang ,2017 ,Modul Ekonometrika ,Fakultas Ekonomi ,UNIBA Surakarta.

Tidak ada komentar:

Posting Komentar